

Mining and Metallurgical Institute named after O.A. Baikonurov Department of "Materials Science, Nanotechnology and Engineering Physics"

EDUCATIONAL PROGRAM 7M05301 «Applied and engineering physics»

Code and classification of the field of education:

7M05 Natural Sciences, Mathematics and Statistics

Code and classification of training directions:

7M053 Physical and chemical sciences

Group of educational programs:

M090 Physics

Level based on NOF:7

Level based on IQF:7

Study period: 2 years

Amount of credits:120

Educational program 7M05301 «Applied and engineering physics» was approved at the meeting of K.I. Satbayev KazNRTU Academic Council

Minutes # 10 dated «06» 03 2025.

was reviewed and recommended for approval at the meeting of K.I. Satbayev KazNRTU Educational and Methodological Council

Minutes # 3 dated «20» 12 2025.

Educational program 7M05301 «Applied and engineering physics» was developed by Academic committee based on direction 7M053 Physical and chemical sciences

Full name	Academic degree/ academic title	Position	Workplace	Signature
Chairperson of	Academic Committee:			
Kakimov U.K.	PhD	Head of Department	Non-profit Joint Stock Company "Kazakh National Research Technical University named after K.I. Satpayev"	M.
Teaching staff:			Satpayer	
Azat S.	PhD	Professor	Non-profit Joint Stock Company "Kazakh National Research Technical University named after K.I. Satpayev"	aş
Kudaibergenov K.	PhD	Associate Professor	Non-profit Joint Stock Company "Kazakh National Research Technical University named after K.I. Satpayev"	8
Kemelbekova A.	PhD in material science	Senior Lecturer	Non-profit Joint Stock Company "Kazakh National Research Technical University named after K.I. Satpayev»	Aug
Yetish T.	Master of technical science, PhD student	Lecturer	Non-profit Joint Stock Company "Kazakh National Research Technical University named after K.I. Satpayev»	thef
Employers:				
Mutushev A.	PhD	General Director	Scientific Production and Technical Center "ZHALYN"	Min
Students		Maria Land		
ihanov S.		2rd year student	Non-profit Joint Stock	

Altynov Y.		Company "Kazakh National Research Technical University named after K.I. Satpayev»	d
	2nd year student	Non-profit Joint Stock Company "Kazakh National Research Technical University named after K.I. Satpayev»	Frem
Serikkyzy A.	2nd year student	Non-profit Joint Stock Company "Kazakh National Research Technical University named after K.I. Satpayev»	Capago

Table of contents

List of abbreviations and designations

- 1. Description of educational program
- 2. Purpose and objectives of educational program
- 3. Requirements for the evaluation of educational program learning outcomes
- 4. Passport of educational program
- 4.1. General information
- 4.2. Relationship between the achievability of the formed learning outcomes according to educational program and academic disciplines
- 5. Curriculum of educational program
- 6. Additional educational programs (Minor)

List of abbreviations and designations

Abbreviation	Full name
Ts	Teaching staff
EP	Educational program
OR	Registrar's Office
WC	Working Curriculum EP

1. Description of educational program

Educational program 7M05301 - "Applied and engineering physics" - is the second level of qualification of the three-level higher education system, which lays the basis for the subsequent doctoral program.

The program is aimed at training specialists in a wide range of activities. The necessary basic knowledge and skills in the field of natural sciences, engineering and technology will allow future specialists to easily integrate into the work process of almost any industry, research institutes, and universities. The educational program lays the scientific foundations in the field of materials science, nanotechnology, nuclear technology, computer technology, and semiconductor electronics. Specialist training is conducted in the field of research, development, creation and operation of new materials, technologies, instruments and devices. The work of specialists consists of manufacturing, improving, operating and repairing instruments and devices, creating and researching new materials, as well as their development and implementation of technologies in the areas of application.

Graduates, having received the degree "Master of Technical Sciences in the educational program 7M05301 - "Applied and engineering physics", have the following opportunities:

-analyze the state of a scientific and technical problem, formulate technical specifications, set goals and objectives of research based on the selection and study of literary and patent sources;

-select optimal methods and research programs, modify existing ones and develop a new method based on the problem of a particular study;

-conduct theoretical and experimental research with the aim of modernizing or creating new materials, components, processes and methods;

-model physico-mathematical and physico-chemical modeling of developed materials, parts and processes in order to optimize their parameters;

-use of standard and development of new software products aimed at solving scientific, design and technological problems within the framework of professional activities.

Implies: engineer-physicist in all branches of production; engineering researcher in design organizations, institutions, institutes, universities; teaching staff member; technical specialist, technical consultant in areas of activity; technical engineer, process engineer in the field of materials science (materials scientist, copper); research engineer; electronics engineer, etc.

2. Purpose and objectives of educational program

Purpose of EP:

Training of scientific, scientific-pedagogical and engineering personnel of a physical and technical profile for science, education and industry with the skills of a working group leader and an expert to solve applied problems focused on the development and implementation of innovative technologies using computer simulation to integrate scientific research into industrial enterprises.

Tasks of EP:

- 1) Knowledge and understanding of scientific and mathematical transformations based on various specializations in engineering physics and materials science;
- 2) The ability to apply acquired knowledge to set, formulate and solve applied scientific problems in technical physics, using recognized methods;
- 3) The ability to apply acquired knowledge to analyze technical systems, processes and methods related to various specializations in engineering physics and materials science, including using modeling methods;
- 4) Understanding of engineering systems design methodologies and the ability to apply them;
- 5) The ability to find the necessary literature, use databases and other sources of information;
- 6) The ability to analyze, plan and conduct the necessary research, interpret the data obtained and draw conclusions;
 - 7) Ability to select and use suitable equipment, tools and methods;
 - 8) Work effectively both individually and as a team member;
- 9) Demonstrate awareness in the field of project management and business, knowledge and understanding on the part of the supplier and changing conditions;
- 10) Recognize the need and have the opportunity to independently study and improve qualifications throughout life;
- 11) Understanding of health, safety, legal issues and responsibilities in engineering, understanding engineering decisions in social and environmental contexts;
- 12) Follow the code of professional ethics and standards of engineering practice.

3. Requirements for evaluating the educational program learning outcomes

Learning outcomes include knowledge, skills and competencies and are determined both for the educational program as a whole and for its individual modules, disciplines or assignments.

Selecting means of assessing learning outcomes The main task at this stage is to select assessment methods and tools for all types of control, with the help of which one can most effectively assess the achievement of planned learning outcomes at the discipline level.

4. Passport of educational program

4.1. General information

No	Field name	Comments
1	Code and classification of the field of	7M05 Natural Sciences, Mathematics and
	education	Statistics
		7M052 DI ' I I I ' I '
2	Code and classification of training directions	7M053 Physical and chemical sciences
3	Educational program group	M090 Physics
	Educational program name	7M05301– «Applied and engineering physics»
	Short description of educational program	Educational program 7M05301 – "Applied and Engineering Physics" is the second level of qualification of the three-level higher education system
6	Purpose of EP	Training of scientific, scientific-pedagogical and engineering personnel of a physical and technical profile for science, education and industry with the skills of a working group leader and an expert to solve applied problems focused on the development and implementation of innovative technologies using computer simulation to integrate scientific research into industrial enterprises.
7	Type of EP	New EP
8	The level based on NQF	7
9	The level based on IQF	7
10	Distinctive features of EP	No
	List of competencies of educational program	KK1. Communicativeness KK2. Basic literacy in Natural science disciplines KK3. General engineering competences KK4.Professional competencies KK5. Engineering-computer competencies KK6.Engineering-working competencies KK7. Socio-economic competences KK8. Special-professional competences
12	Learning outcomes of educational program	Assess the opportunities and conditions for commercialization to develop an enterprise strategy in the field of engineering physics, computer simulation of physical processes and "green energy" on digital platforms when

13 Education form	enterprises move to an innovative technological level 2) integrate scientific and professional knowledge and foreign experience into the practice of the educational process in higher education in production and management, design and construction, organisational and technological and scientific and pedagogical areas 3) Organise the work of teams of performers on adjustment of technological equipment of high complexity using the necessary methods and means of analysis 4) To systematize further education in the field of industrial production, technological engineering, scientific and innovative activities 5) To plan activities for the development of innovative projects using the principles and methods of organizing and managing production with the integrated use of elements of the system for diagnosing available resources 6) Formulate at a professional level their knowledge, understanding and ability to solve problems in a new environment, in a broader interdisciplinary context 7) Explore the theoretical aspects of applied physics to improve the pedagogical skills of the graduate 8) To formulate system knowledge for independent research work on the creation, research and application of low-dimensional structures in the field of applied physics
13 Education form	Full - time
14 Period of training	2 years
15 Amount of credits	120
16 Languages of instruction	Russian, Kazakh
17 Academic degree awarded	Master Mutushev Alibek Zhumabekovich
18 Developer(s) and authors	Kakimov Ulan Kadyrkhanuly
	Azat Seythan
	Kudaibergenov Kenes Kakimovich
	Kemelbekova Ainagul Erzhanovna Yetish Talshyn Erbolkyzy
	1 Cush Taishyn Litotikyzy

4.2. Relationship between the achievability of the formed learning outcomes based on educational program and academic disciplines

No	Discipline name	Short description of	Amount of		Ge	nerated	l learni	ng outo	comes (codes)	
	-	discipline	credits	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
		Cycle of 1	L basic discipli	nes							
		Univers	ity compone	nt							
1	Foreign language	The purpose of the course is to	3	✓	✓			✓			
	(professional)	improve and develop foreign									
		language communication									
		skills in the professional and									
		academic field. Course									
		content: general principles of									
		professional and academic									
		intercultural oral and written									
		communication using modern									
		pedagogical technologies									
		(round table, debates,									
		discussions, analysis of									
		professionally oriented cases,									
		design).									
2	History and philosophy of	Purpose: To explore the	3		√				✓		
	science	history and philosophy of									
		science as a system of									
		concepts of global and Kazakh									
		science. Contents: The subject									
		of philosophy of science,									
		dynamics of science, the main									
		stages of the historical									
		development of science,									
		features of classical science,									
		non-classical and post-non-									
		classical science, philosophy									

		of mathematics, physics, engineering and technology, specifics of engineering sciences, ethics of science, social and moral responsibility of a scientist and engineer.					
3	Higher school pedagogy	Purpose: To learn how to solve scientific and pedagogical problems, taking into account new technologies in the field of higher education. Contents: methodological and theoretical foundations of higher school pedagogy, modern pedagogical technologies, planning and organization of learning and upbringing processes, the use of communicative technologies of subject-subject interaction between a teacher and a student in the educational process of a university, human resource management in higher educational institutions.	3	*			
4	Psychology of management	Objective: To acquire skills in making strategic and managerial decisions, taking into account the psychological characteristics of the individual and the team. Content: the modern role and	3	√		√	

		content of psychological aspects in management activities, methods for improving psychological literacy, the composition and structure of management activities, both at the local and foreign levels, the							
		psychological feature of							
		modern managers.							
		•	basic discipli						
5	Trade lle educel mars in a inter- a in d	Purpose: to train specialists who can	e component	Ţ.	√		1./	1./	
5	Intellectual property and research	effectively manage rights to the results of intellectual activity in the field of science, as well as ensure their legal protection and commercialization. Content: analysis of legal protection of research and development results, methods of commercialization of scientific inventions, ethical and legal aspects of scientific activity in the context of IP.	5		•		V	V	
6	Information technologies in science and production	The discipline studies the basics of information technologies, their role in solving applied problems, purpose, composition, structure, types and technologies of using information systems and technologies, their elements, the order of functioning, classification features. In addition, special attention is	5	✓		√			

		paid to specialized software tools, the development of new technologies of production processes, the improvement of information technologies in the management of these processes.						
7	Materials science and advanced materials technology	The discipline is aimed at studying the basic provisions and principles of the formation of a given level of structure and properties of materials for various purposes, mastering the principles of managing the structural-phase state of materials and the influence of technological factors of external influence on it, modern aspects of the use of specific practical techniques for the implementation of new materials with specified properties.	5				✓	✓
8	Synthesis Methods of Nanomaterials and Nanostructures	The discipline studies methods for obtaining nanostructures and functional nanomaterials with certain specified properties. Methods of controlled growth for the synthesis of nanostructures of the required size and shape, methods for the synthesis of films and coatings,	5	V	✓	✓		V

		stabilization of dispersions of nanoparticles, and self-								
		organization of nanostructures in films and bulk structures are considered.								
0	Cyctoin able development		5	./	./			./	-/	
9	Sustainable development strategies	Purpose: to foster comprehensive expertise and	3	V	ľ			V	V	
	strategies	skills in formulating and								
		executing sustainable								
		development strategies across								
		different tiers, to equip								
		individuals with a profound								
		understanding of sustainable								
		development practices.								
		Content: encompasses an								
		extensive array of subjects,								
		spanning from global								
		environmental dilemmas like								
		climate change, biodiversity								
		loss, and natural resource								
		exhaustion to socio-economic								
		dimensions such as disparity,								
		healthcare, and education.								
10	Thermodynamics	The discipline is intended for	5			V	\checkmark	~	✓	
		the study of thermodynamics,								
		the implementation of a								
		systematic study of physical								
		processes and phenomena in								
		energy systems, thermal								
		devices and machines and								
		methods for their								
		mathematical description, to								
		form a fundamental basis for								
		the successful study of major								

		disciplines.								
11	Solid State Physics and	The discipline studies the idea of the	5	√		√		✓	√	√
	Crystallography	fundamental foundations of solid								
	erystanography	state physics and crystallography,								
		the features of the crystal structure,								
		the effect of defects on the properties of solids, a systematic								
		understanding of the processes								
		occurring in electronic media								
		materials.								
12	Physical and chemical bases	The discipline studies the	5		\checkmark		\checkmark	\checkmark		✓
	of materials	basics of materials science and								
		fundamental concepts and								
		laws in the field of physics								
		and chemistry, various phase								
		diagrams and their								
		construction. The course also								
		examines the application of								
		the laws of thermodynamics in								
		the study of materials, in-								
		depth studies of the theory of								
		defects in crystalline solids,								
		the processes of crystallization								
		and recrystallization, methods								
		of controlling the composition								
		of composite materials.								
		Cycle of p	rofile discipl	lines						
			ty compone	nt						
13	Application of quantum-size	The discipline studies	5		\checkmark		\checkmark	\checkmark		✓
	structures in micro-and	quantum-dimensional								
	nanoelectronics devices	structures that are the basis of								
		modern micro- and								
		nanoelectronics, fundamental								
		laws that form the physical								
		and chemical features of the								
		synthesis of low-dimensional								

		objects, their optical, structural and electrical properties, the basic physical principles of nanoelectronics, physico-chemical processes for obtaining solid-state low-dimensional structures, their application in nanoelectronics devices.				
14	Physics of the Atom and Atomic Nucleus	The discipline studies the development of ideas about the quantum properties of microparticles, allowing them to describe the structure and properties of the atom and the atomic nucleus, fundamental aspects such as wave-particle dualism and quantum mechanical aspects of the universe, considers various explanations of the structure of the atom, the atomic nucleus and compares with the modern classification of elementary particles.	5			
15	Fundamentals of Nanotechnologies	The discipline studies the fundamentals of obtaining nanoparticles and the processes of formation of nanostructures and nanomaterials, various methods for their synthesis, control of the growth of nanoparticles of the required	5			\

		.:									
		sizes and shapes, the									
		production of films and									
		coatings using nanomaterials,									
		as well as quality control of									
		the obtained nanostructures									
		and nanomaterials.									
16	Numerical methods for	This course studies the	5	\checkmark		✓			\checkmark		
	solving physical problems	development of practical skills									
		for the numerical solution of									
		problems of classical and									
		quantum physics using various									
		methods: computational									
		mathematics in accordance									
		with the triad "model -									
		algorithm - program",									
		computational methods of									
		linear algebra, differentiation									
		and integration, ordinary									
		differential equations and									
		equations with partial									
		derivatives, Monte Carlo									
		methods, choose adequate									
		solution algorithms and write									
		programs in MATLAB.									
		ı C	e of profile								
		· · · · · · · · · · · · · · · · · · ·	sciplines								
			lective								
			nponent								
17	Electron and sonde	The discipline studies the	<u> </u>			√	√	√		√	√
'	microscopy for studying of	device and the main	J								
	nanomaterials	characteristics of transmission									
		electron and probe atomic									
		force microscopy devices, the									
		course also examines the									
		course also examines the			<u> </u>						

		theory of formation and interpretation of the obtained images, get theoretical and practical skills of working with transmission electron and probe atomic force microscopes.									
18	Materials for energy storage and conversion	The discipline studies the physical foundations of the realization of the phenomena of the photoelectric effect, thermoelectronic emission and the Seebeck-Peltier-Thompson effect and forms an understanding of the principles of functioning of photovoltaic, thermoemission and thermoelectric energy converters.	5	✓			✓		√	√	√
19	Materials with special technological properties	The discipline studies the theoretical foundations of the formation of special or special properties in metal materials for various purposes. Materials with special technological properties are considered from the point of view of regulating their physico-chemical properties, methods and processing modes.	5	~		\		~			\
20	Multiphase structures and methods for calculating phase diagrams	This course studies the	5	√	√			√	√		

		calculating phase diagrams of metal systems, in the ability to make flowcharts and computer programs for calculating phase diagrams, in constructing isothermal and polythermal sections of phase diagrams of multicomponent systems by calculation.					
21	Semiconductor's Structures	The discipline studies the basic physical properties of low-dimensional semiconductor structures, the principles of dimensional quantization and the conditions for observing quantum-dimensional phenomena are studied. The course examines optical properties and kinetic features in magnetic fields, features of the density function of states and statistics of charge carriers.	5				
	Practical perspective of X-ray diffratometry		5	√	\	•	✓ ·

		problems.								
23	Project Management	The discipline studies the	5	✓	√			✓		
		components of project								
		management based on modern								
		behavioral models of project-								
		oriented business development								
		management. The program is								
		based on the international								
		standards PMI PMBOK,								
		IPMA ICB and the standards								
		of the Republic of Kazakhstan								
		in the field of project								
		management. The features of								
		organizational management of								
		business development through								
		the interaction of strategic,								
		project and operational								
		management are studied.								
24	Production, properties,	The discipline studies low-	5			V	✓	V		√
	application of carbon low-	dimensional carbon materials								
	dimensional materials.	such as graphene, carbon								
		nanotubes and fullerenes.								
		These materials are considered								
		from the point of view of their								
		use in opto- and								
		nanoelectronic devices.								
		Technologies for their								
		production, physicochemical								
		properties, establishing the								
		relationship between								
		production methods and								
		properties, as well as the								
		possibility of using carbon								
		nanostructures and composites				1				

		based on them are also being studied.						
	The modern theory of the atomic nucleus	The discipline studies modern models of the atomic nucleus, the basic concepts, ideas and methods of the modern theory of elementary particles, the results of modern research conducted at the Large Hadron Collider to study particles such as the Higgs Boson, explains the features of string theory.	5	✓	✓		\	√
26	Spectral methods for studying low-dimensional objects	<u> </u>	5		\	√	\	\

5. Curriculum of educational program

NON-PROFIT JOINT STOCK COMPANY "KAZAKH NATIONAL RESEARCH TECHNICAL UNIVERSITY NAMED AFTER K.I. SATBAYEV"

«APPROVED»
Decision of the Academic Council
NPJSC«KazNRTU
named after K.Satbayev»
dated 06.03.2025 Minutes № 10

WORKING CURRICULUM

Academic year 2025-2026 (Autumn, Spring)

Group of educational programs M090 - "Physics"

Educational program

The awarded academic degree

Master of science in Natural Sciences

Master of science in Natural Sciences

Form and duration of study full time (scientific and pedagogical track) - 2 years

Discipline				Total	Total	lek/lab/pr	in hours	Form of	Allocatio		face training d semesters	based on	Prerequisites
code	Name of disciplines	Block	Cycle	ECTS credits	hours	Contact hours	SIS (including TSIS)	control	1 co	urse	2 co	urse	
				creuits		nours	1313)		1 sem	2 sem	3 sem	4 sem	
	C	YCLE	OF GE	NERAL I	EDUCAT	TION DIS	CIPLINES (GI	ED)					
			CYCI	LE OF BA	ASIC DI	SCIPLINE	ES (BD)						
			ľ	M-1. Mod	lule of b	asic traini	ng						
LNG213	Foreign language (professional)		BD, UC	3	90	0/0/30	60	E	3				
HUM214	Psychology of management		BD, UC	3	90	15/0/15	60	Е	3				
HUM212	History and philosophy of science		BD, UC	3	90	15/0/15	60	Е		3			
HUM213	Higher school pedagogy		BD, UC	3	90	15/0/15	60	Е		3			
M - 2. Module of theoretical training													
PHY292	Solid State Physics and Crystallography	1	BD, CCH	5	150	30/0/15	105	Е	5				
PHY244	Thermodynamics	1	BD, CCH	5	150	30/0/15	105	Е	5				
MNG781	Intellectual property and research	1	BD, CCH	5	150	30/0/15	105	Е	5				
	M - 3. Materials Science Module												
PHY291	Materials science and advanced materials technology	1	BD, CCH	5	150	30/0/15	105	E	5				
PHY774	Materials and components for micro- and nanoelectronics	1	BD, CCH	5	150	30/0/15	105	E	5				
			I	M-4. Nan	otechno	logy modu	ıle						
PHY295	Synthesis Methods of Nanomaterials and Nanostructures	1	BD, CCH	5	150	30/0/15	105	Е			5		
PHY279	Information technologies in science and production	1	BD, CCH	5	150	15/0/30	105	Е			5		
MNG782	Sustainable development strategies	1	BD, CCH	5	150	30/0/15	105	Е			5		
			N	1-7. Prac	tice-orie	nted mod	ule						
AAP273	Pedagogical practice		BD, UC	8				R			8		
			CYCLI	E OF PRO	OFILE I	DISCIPLIN	NES (PD)						
		1	M	- 3. Mat	erials So	cience Mod	lule	1	1	r	1	r	
MNG705	Project Management	1	PD, CCH	5	150	30/0/15	105	E			5		
PHY775	Quantum technologies and quantum engineering	1	PD, CCH	5	150	30/0/15	105	Е			5		
PHY772	Advanced Structural Materials		PD, UC	4	120	30/0/15	75	Е				4	
				M-4. Nan	otechno	logy modu	ıle						
PHY700	Production, properties, application of carbon low-dimensional materials.	2	PD, CCH	5	150	30/0/15	105	Е			5		
PHY266	Materials for energy storage and conversion	2	PD, CCH	5	150	15/0/30	105	Е			5		

	M-6. R&D module												
PHY701	Electron and sonde microscopy for studying of nanomaterials	1	PD, CCH	5	150	30/0/15	105	Е			5		
PHY299	Spectral methods for studying low-dimensional objects	1	PD, CCH	5	150	30/0/15	105	Е			5		
M-7. Practice-oriented module													
AAP256	Research practice		PD, UC	4				R				4	
M-8. Experimental research module													
AAP268	Research work of a master's student, including internship and completion of a master's thesis		RWMS	4				R	4				
AAP268	Research work of a master's student, including internship and completion of a master's thesis		RWMS	4				R		4			
AAP251	Research work of a master's student, including internship and completion of a master's thesis		RWMS	2				R			2		
AAP255	Research work of a master's student, including internship and completion of a master's thesis		RWMS	14				R				14	
					M-5.								
PHY293	Numerical methods for solving physical problems		PD, UC	5	150	30/0/15	105	E	5				
PHY777	Applied optoelectronics and photonics		PD, UC	5	150	30/0/15	105	Е	5				
PHY296	Physics of the Atom and Atomic Nucleus		PD, UC	5	150	30/0/15	105	Е		5			
PHY298	Application of quantum-size structures in micro-and nanoelectronics devices		PD, UC	5	150	30/0/15	105	Е		5			
PHY297	Practical perspective of X-ray diffratometry	1	PD, CCH	5	150	30/0/15	105	Е		5			
PHY778	Physico-chemical bases of lithium-ion energy sources	1	PD, CCH	5	150	30/0/15	105	Е		5			
PHY255	Semiconductor's Structures	2	PD, CCH	5	150	30/0/15	105	Е		5			
PHY267	Materials with special technological properties	2	PD, CCH	5	150	15/0/30	105	Е		5			
			М	-9. Modu	ule of fir	al attestat	ion						
ECA212	Registration and protection of the master thesis		FA	8								8	
	Total based o	n UNIV	ERSITY:						30	30	30	30	
									6	50	6	0	

Number of credits for the entire period of study

Cycle code	Cycles of disciplines	Credits										
Cycle code	Cycles of disciplines	Required component (RC)	University component (UC)	Component of choice (CCH)	Total							
GED	Cycle of general education disciplines	0	0	0	0							
BD	Cycle of basic disciplines	0	20	15	35							
PD	Cycle of profile disciplines	0	28	25	53							
	Total for theoretical training:	0	48	40	88							
RWMS	Research Work of Master's Student				24							
ERWMS	Experimental Research Work of Master's Student				0							
FA	Final attestation				8							
	TOTAL:				120							

Decision of the Educational and Methodological Council of KazNRTU named after K.Satpayev. Minutes $\,N\!2\,$ 3 dated 20.12.2024

Decision of the Academic Council of the Institute. Minutes $\ensuremath{\text{M}}\xspace^2$ 4 dated 12.12.2024

Signed:

Governing Board member - Vice-Rector for Academic Affairs

Approved:

Vice Provost on academic development

Head of Department - Department of Educational Program Management and Academic-Methodological Work

Director - Mining and Metallurgical Institute named after O.A. Baikonurov

Department Chair - Materials Science, Nanotechnology and Engineering Physics

Representative of the Academic Committee from Employers
____Acknowledged____

Uskenbayeva R. K.

Kalpeyeva Z. Б.

Zhumagaliyeva A. S.

Rysbekov K. .

Kakimpv U. K.

Mutushev A. Z.

